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1. Introduction. If we draw chords in circles so that the chords have
the option of intersecting only neighboring chords, counting such arrangements
uses the Fibonacci numbers, de�ned as F1 = F2 = 1 and Fk+1 = Fk + Fk�1 for
k � 2. We will show that most of these diagrams have a chord which does not
intersect its neighbors.
2. De�nitions A chord diagram is a circle, oriented counter-clockwise,

with chords drawn in. Diagrams are considered equal up to di¤eomorphism;
this means the sizes or shapes of the chords do not matter. We pay attention to
the relative position of the endpoints. So a two-chord diagram with chords that
must cross is the same, whether the chords are two diameters or two small chords
jammed into a quadrant of the circle. For knot theoretical reasons explained in
the last section, we will focus on diagrams with a speci�c structure.
This structure has a physical example. Suppose a circular room has people

standing against the wall, all the way around. The people must keep their backs
to the wall. Each may slide a left foot to the left or a right foot to the right,
past a neighbor�s foot to the left or right (or both) so that intersections occur.
So nobody can have both feet between another person�s feet. Their trousers
are like our chords. A chord may cross one or both of its neighbors or have no
crossings at all. Also, no chord may be nested with both its endpoints between
the endpoints of another chord. (We must allow an exception to this rule for
the diagram with only 2 chords, no crossings, because two people standing next
to each other in a round room don�t really have their own feet between the
other�s feet.) We give each chord a name, starting with C1 at the top of the
circle, counting counter-clockwise. The endpoints of chord Ci are both called ci
because they will actually stand for the same point, as we shall see in the last
section. We will label the arc of the circle between endpoints of adjacent chords
using the higher subscript of the two neighbors, with the exception of the place
where the �rst and last chords meet. There, we use the lower subscript in order
to get a 1 in the logical spot.
We can now be very speci�c about the chord diagrams in this paper. When

reading along the circle counter-clockwise, the �rst appearance of endpoint ci
may only have the second appearance of ci�1, the �rst appearance of ci+1, or
the second appearance of ci immediately following it. When chord Ci has its
endpoints ci consecutive, we call Ci an isolated chord. (When i = p, we use
1 instead of p + 1 in these rules.) In Figure 1, we have thick arcs for the
alternating arcs between neighbors. A closed vertex path exists when we start
at an endpoint, follow the thick arc to its other endpoint, then follow the chord
at that endpoint to the chord�s other endpoint and so on. A closed vertex path
using alternating arcs and all the chords is always possible with our special
chord diagrams. We will call our diagrams one-piece diagrams. Not all chord

1



diagrams are one-piece and plenty of diagrams with the closed vertex path do
not have our restricted structure. We will call any diagram with an isolated
chord a null chord diagram for a reason given in the last section. We will call a
place where two chords cross a transposition because if c2 crosses c3, an endpoint
of c3 appears between the endpoints of c2.

Figure 1. One-piece diagram.

3. Counting null chord diagrams. Let�s consider the set Dp of all
one-piece diagrams with p distinct chords. We are treating chords as distinctly
numbered. Because we either have two consecutive chords crossing or not, and
there are p places where endpoints are neighbors, the size of Dp is 2p. We will
now count the number of null chord diagrams in Dp.
We isolate some chord Ck. We will count the diagrams such that no chord

preceding Ck is isolated, and every chord after Ck can be isolated or not be
isolated. To isolate chord Ck, we cannot transpose endpoints at k or endpoints
at k+1. However, we must transpose endpoints at k� 1 in order to keep chord
Ck�1 not isolated.
To keep the chords before Ck not isolated, some of their endpoints must

be transposed, but not necessarily all of them. We can name the arcs where
transpositions could happen with the phrase 1 or 2 or both, and, 2 or 3 or both,
and,..., and k�3 or k�2 or both. (We have to handle k = p separately, after the
proof.) We will call the set of all optional choices which leave no chord before Ck
isolated the set Hk: Each element of Hk is a subset of f1; 2; ::; pg because each
Hk is a set of subsets of transpositions:The number i is in one of these subsets
if and only if the endpoints of Ci�1 and Ci are transposed, (except for i = 1,
when C1 and Cp have endpoints transposed.) We will use the notation jHkj for
the number of elements in Hk. This structure will remind number theory fans
of a famous sequence.
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Lemma. jHkj = Fk, for k < p; where Fk is the kth Fibonacci number.
Proof. To isolate C1, the set of transpositions H1 must not include endpoints
at arcs 1 or 2. Endpoints beyond C1 are not included in H1. Thus, we
have no optional endpoints to include in H1, so the set of chord diagrams with
optionally transposed endpoints H1 = f;g and jH1j = 1: This leaves p � 2
endpoints remaining above C1, so there are 2p�2 ways to isolate chord 1. (We
might as well count our chord diagrams while we work the proof.)
To isolate C2 with C1 not isolated, the set of transpositions H2 must not

include endpoints at arcs 2 or 3, but must transpose endpoints at 1. So, again
there are no options to put inH2 because the transposition at 1 is mandatory. So
the set H2 = f;g and jH2j = 1: (We have just begun our sequence of Fibonacci
numbers with 1, 1.) There are 2p�3 ways to isolate C2 without isolating C1.
To isolate C3 without isolating C1 and C2, the set of transpositions must not

contain endpoints at 3 or 4, but must contain endpoints at 2. Since the endpoints
at 2 are transposed, C1 is automatically not isolated. Thus, our �rst option is
to transpose, or not transpose, the endpoints at arc 1, so H3 = ff1g ; ;g. There
are 2p�4 options for the endpoints numbered above C3 and jH3j = 2.
To isolate C4 with chords C1; C2; and C3 not isolated, the set H4 must not

contain the endpoints at arcs 4 and 5 but must contain 3. This gives the arcs
below C3 options to be included in H4: We write them as 1 or 2 or both;
H4 = ff1g ; f2g ; f1; 2gg and jH4j = 3: There are 2p�5 options beyond chord C4.
To isolate C5 with chords C1; C2; C3 and C4 not isolated, the setH5 must not

contain endpoints at arcs 5 or 6 but must contain endpoints at 4. The optional
endpoints at 1, 2, 3 may be stated as 1 or 2 or both, and, 2 or 3 or both. We note
that we can build H5 from H4 and H3 by appending a 3 to each set in H4 and
a 2 to each set in H3. This gives H5 = ff1; 3g; f2; 3g; f1; 2; 3g; f1; 2g; f2ggand
jH5j = 5: The coe¢ cient for the options beyond chord 5 is 2p�6:
Besides establishing the beginnings of the Fibonacci sequence, we have also

illustrated how to apply the induction assumption. We now consider Hk+1. We
build Hk+1 from Hk and Hk�1, as in the example. Remember, Hk leaves no
chord from C1 through Ck�1 isolated, and Hk�1 leaves no chord isolated from
C1 through Ck�2. To isolate Ck+1, without isolating any previous chord, we
must transpose at arc k; so k is not listed in Hk+1. Appending k � 1 to all
sets in Hk gives a set of sets which leaves no chord isolated before Ck+1 and a
transposition at endpoints k � 1. Appending k � 2 to all sets in Hk�1 gives a
set of sets which leaves no chord before Ck isolated and no transposition at arc
k � 1. But that�s all right because of the mandatory transposition at k. The
new appended sets are mutually exclusive.
To see that the union of appended sets is exactly Hk+1, let h 2 Hk+1.

Then, h leaves no chord isolated for C1 through Ck, when a transposition at k
is automatic. Thus, h has 1 or 2 or both, and, 2 or 3 or both, and so on up
to k � 2 or k � 1 or both. If k � 1 2 h; then h is an element of the appended
version of Hk. If k � 1 =2 h; then h is an element of the appended version of
Hk�1.
So jHk+1j = jHkj+ jHk�1j = Fk + Fk�1 = Fk+1: �
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The cases through Hp�1 all have a power of 2 times a corresponding Fi-
bonacci number, exceptHp, which has no numbered chord above it. Our Lemma
does not apply to Hp. To �nish our cases, let�s count the number of chord dia-
grams with only chord p isolated. Then Hp must contain the endpoints at arcs
p � 1 and at 2, (Figure 2.) The options are at 3 or 4 or both, and, 4 or 5 or
both, and... so on up to p� 3 or p� 2 or both; in other words, we have two less
chords than usual to get crossed. Luckily, we�re now experts at counting this:
Fp�2: We can use these results to count the number of null chord diagrams out
of the 2p possible one-piece diagrams.

c1 cp

cp­1

2
1

p­1

p

Figure 2. Cp.

The above proof is longer than necessary for those readers familiar with the
various ways the Fibonacci numbers occur in counting problems. We were un-
familiar with this Fibonacci structure and we were amazed to see our problem�s
approximate structure rewritten on Fibonacci puzzle pages. Our Fibonacci ref-
erence [3] gives as close a version as anybody else�s.
So, the number of null, one-piece diagrams with p chords is

Fp�2 +
p�1P
i=1

Fi2
p�1�i.

After calculating some values for this number, we noticed that it grows
almost as fast as 2p. We programmed our calculators to �nd the ratio between
our sum and 2p for p < 45 and the ratio approached 1. We went to work on the
limit of this ratio and found the ratio of null diagrams to total diagrams does
indeed approach 1 as p increases, with a proof worth sharing.

Theorem. lim
p!1

�
1

2p

�
Fp�2 +

p�1P
i=1

Fi2
p�1�i

��
= 1

Proof. Since there are 2p chord diagrams when we take all possible transpo-
sitions, we now have the following inequalities. (Dropping the Fp�2 term from
the middle expression felt overly generous at �rst, because Fp�2 gets large as
p increases. But the move turned out so well that we might call this sacri�ce,
�golden.�)
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p�1P
i=1

Fi2
p�1�i �

p�1P
i=1

Fi2
p�1�i + Fp�2 � 2p:

There is a Fibonacci formula using the Golden Ratio ' = 1+
p
5

2 . It states

Fn =
'n � (�1' )

n

p
5

[4], which turns the left-hand sum into a di¤erence of two

geometric series, when we divide by 2p: Taking the limit as p!1 squeezes the
ratio of null chord diagrams to 1. The interesting math happens in the left-hand
limit. Here, we substitute for ' and rationalize denominators, after taking the
limit.

lim
p!1

1
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Fi2
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p!1
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4. Knot theory context. We would like to take a moment to show how
this paper started with knot theory. A knot is a loop in three-dimensional
space, like a shoelace with the ends sealed together. The loop may weave in and
around itself in all sorts of complicated ways. Telling knots apart has been, and
remains, an important part of knot theory. A generalization of knots, called
singular knots, has turned out to be quite useful in sorting knots. A singular
knot is a knot which is allowed to pass through itself. A place where the singular
knot intersects itself is a singularity.
A chord diagram represents a family of singular knots where each singularity

is a chord. If we treat the knot as an oriented loop, we can draw a chord for
the place where two points of the loop are treated as the same point, hence
our naming the two endpoints of a chord with the same name. An isolated
chord is like a pinch in a singular knot. Such a pinch is the least interesting
of singularities and, in some calculations, the pinch causes the singular knot
to contribute nothing. The chord diagrams with isolated chords get attention
because they represent singular knots with pinches. This is also the reason why
they are called null diagrams.
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Figure 3. A chord diagram represents a singular knot.

In Figure 3, we show a singular knot which our chord diagram from Figure
1 represents, with labels suppressed. The arrow marker on the circle designates
the starting point for drawing the singular knot. The two little blank sections
on the singular knot indicate crossings, like overpasses on a road map. It turns
out the crossings can be chosen in any way which does not change the relative
order of the singularities. Traveling the two pictures will show that the isolated
chord corresponds to the pinched singularity while the crossed chords require a
more complicated arrangement in the singular knot.
There is a signed sum of all our one-piece diagrams with p chords which has

an abbreviation as a single symbol, called a Jacobi diagram. Our research began
with Jacobi diagrams, some of which led to the restricted diagram structure in
this article. The references [1] and [2] show the details for Section 4. The inter-
ested reader should consult them for more information on the knot theoretical
context.
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